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The aim of the present study was to determine elastic modulus of the magnesium-based
composites containing different volume fraction of SiC particulates using an innovative
free-free beam type impact based technique. This technique is based on classical vibration
theory, by which the geometry and material properties of the metal matrix composites are
related to resonant frequency of the test specimen. With the fundamental resonant
frequency obtained from the experiment and density determined by the Archimedes’
principle, the elastic modulus values were determined. In addition, a finite element model
is proposed for different SiC weight percentage samples for the determination of dynamic
elastic modulus using the first natural frequency corresponding to the flexural mode. The
elastic modulus values obtained using finite element method were found to be in close
agreement with the values obtained from the impact based experiments and in better
agreement when compared to theoretical methods such as Halpin-Tsai method. Both the
theoretical approaches, in common, exhibit the increasing trend of elastic modulus value
with an increase in weight percentage of SiC particulates. C© 2000 Kluwer Academic
Publishers

1. Introduction
Metal Matrix Composites (MMCs) represent the uni-
fied combination of stronger and stiffer ceramic rein-
forcement with ductile and tougher metallic materials
[1]. The properties of these composites can be tailored
to specific design requirements. The type of properties
which can be controlled in the final composites are for
example, stiffness, density, thermal expansion coeffi-
cient, wear resistance, hardness, and strength [2–6]. As
such MMCs have the potential to serve to a spectrum of
applications provided a judicious selection of metallic
matrix, ceramic reinforcement, processing technique
and heat treatment procedure is made. The result of
existing literature search shows that the MMCs are ac-
tively being pursued as potential candidate materials in
aerospace, automotive, electronics and sports sector [1].

Amongst the various mechanical properties, stiffness
or elastic modulus of the metallic matrix can be consid-
erably enhanced as a result of addition of ceramic rein-
forcement. The realization of enhanced stiffness is par-
ticularly desirable for the materials that have to be used
for the fabrication of components designed primarily
based on stiffness. In stiffness based design the con-
straint is to minimize the deflection rather than stress,
hence the young’s modulus has to be controlled. In ad-
dition, if the design requires minimizing the mass and
maximizing the stiffness of the system, then the de-

signer aims to select a material with higher specific
stiffness (E/ρ), whereE andρ are the elastic modulus
and density, respectively. The quantity (E/ρ)1/2 also
represents the velocity of the elastic waves. Thus, aim-
ing for higher specific stiffness results for higher nat-
ural frequency for the component. New materials such
as magnesium-silicon carbide (Mg/SiC) based compos-
ites have been developed with higher stiffness and lower
density to suit to the needs in designing dynamic sys-
tems. This has been possible by controlling the rein-
forcement percentage in the metal matrix. Reinforce-
ment of the magnesium matrix with SiC has distinct
advantage due to [5]:

• Relatively low cost and ready availability of SiC.
• High modulus and strength of SiC.
• Resultant MMC density only slightly higher than

magnesium.
• SiC is thermodynamically stable in molten magne-

sium.

Elastic modulus can be determined by both static and
dynamic methods. The terms static and dynamic are
interpreted in terms of strain rate and strain amplitude.
Static testing such as tensile test involves relatively
large elastic strains and slow strain rates, while dynamic
testing methods such as continuous excitation and
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impulse excitation involves small strains (on the order
of 10−6) and high strain rates [7]. Generally, dynamic
modulus of materials is a function of frequency and
at lower frequency, flexural beam methods are used to
determine the flexural natural frequencies [8], while at
high frequencies the speed of ultrasonic waves through
the medium is used to compute the dynamic modulus
[9]. Continuous excitation and impulse excitation can
measure the dynamic elastic modulus but differ in the
manner in which the specimen are vibrated or excited.
Under continuous excitation the specimen is continu-
ously vibrated and the operating frequency is varied to
check for resonance. The impulse excitation technique
[10, 11], is accomplished by exciting all the resonance
frequencies of the specimen corresponding to a direc-
tion using a force sensor attached hammer and the vibra-
tion is measured using a small mass type accelerometer
or a laser vibrometer. The impulse excitation method
combines rapid testing, high accuracy and simplicity
when using appropriate test specimen geometry such
as a cylindrical rod.

The dynamic modulus studies of several composite
materials including MMCs have been studied by var-
ious researchers using methods similar to piezoelec-
tric ultrasonic composite oscillator technique (PUCOT)
and compared with modulus values obtained from static
techniques [9]. It was observed that the modulus val-
ues measured were more accurate by dynamic means
than by static means and that the static moduli scat-
tered about the dynamic values. The literature search,
however, did not reveal any systematic studies on the
determination of dynamic modulus of MMCs using im-
pact based methods.

Accordingly, in the present study, an impact method
(free-free beam method) was adopted to measure dy-
namic elastic modulus of SiC reinforced extruded mag-
nesium specimens and to study the variation of elastic
modulus with different weight percentage of reinforce-
ment. The dynamic modulus was calculated using the
lowest natural frequency corresponding to the bend-
ing type deformation mode, acquired from the vibra-
tion response of the composite rod to a known impulse
load (also called modal analysis). Further, finite ele-
ment method (FEM) was used to theoretically predict
the dynamic modulus of the material by modeling long
slender round bars with different volume percentages
of SiC particulates in the magnesium matrix.

2. Theoretical considerations
The flexural vibration of a long slender specimen in the
transverse direction can be mathematically described
by the Bernoulli-Euler equation [12].

E I.
d4y

dx4
− ρAω2y = 0 (1)

where,y is the transverse displacement,ω is the fre-
quency,x is the position along the beam,ρ is the den-
sity, A is the cross-sectional area of the beam,E is the
Young’s modulus andI is the second moment of the
cross-sectional area.

Equation 1 is a fourth order differential equation,
which can be solved to arrive at the natural frequency

of vibration of the beam for various end support condi-
tions [8, 12]. For example, under the free-free support
condition, the beam is suspended at the vibration nodal
points by nylon strings and the corresponding natural
frequency of the beam is given by Equation 2.

ωn = 22.4

√
E I

Aρl 4
(2)

Using Equation 2 the dynamic elastic modulus can be
expressed in terms of the natural frequency, material
density and the beam dimensions, viz., diameter (d)
and length (l ) as follows:

E = ω2
nρl 4

31.36d2
(3)

3. Finite element model
Finite Element Method (FEM) is a viable method to
analyze particulate dispersed metal matrix composites
due to its modeling capability of the particulate. FEM
is one of the tools, which has the distinct advantage to
model more closely to the exact geometry. Secondly, it
has the advantage to model the various material prop-
erties in the geometry as well as the anisotropy of the
individual phases. Thirdly, it can model the exact fixity
and the load conditions on the specimen [13].

Mostly FEM has been successfully used in analyzing
laminates or fiber reinforced composites. In the present
work, the particulates have been assumed to have cu-
bic morphology with unit aspect ratio. The particulates
were positioned in the matrix with uniform spacing in
radial, angular and axial directions so as to achieve
global isotropic conditions (see Fig. 1). The size of the
particulate was calculated based on the volume fraction
of the reinforcement.

Figure 1 Placement of the SiC particulates in the FEM model of the
beam. (a) Solid model showing the SiC particulates in a unit cell
(l = 10 mm,d= 10 mm). (b) Corresponding FEM model of the unit
cell. (c) Solid model of a long slender beam (l = 300 mm,d= 10 mm)
by repetitive placement of the unit cells.
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A three dimensional model of a circular MMC rod
was built using the ANSYS5.5 FEM software [14], with
a dimension of 10 mm diameter and 300 mm length,
similar to the dimension of the actual sample under ex-
perimental study (see Fig. 1). Eight cube shaped SiC
particles with unit aspect ratio were placed at equal
distance in the radial, axial and circumferential direc-
tions in 10 mm length of the rod model. The particle
shape was assumed to be square since it closely matches
with the sharp faceted nature of the SiC particles used
in the experimental sample. From the analysis, it was
found that the final bending stiffness of the FEM based
MMC beam model highly depends on the dispersion
characteristics of the reinforcement viz., position of the
SiC square particle from the neutral axis of bending. In
the present model, the particle was placed at the mid-
position along the radial direction and was maintained
for all the different volume fraction of reinforcement.
The size of the cubic particles was varied to suit the vari-
ous volume fraction of the reinforcement in the unit cell.
This method was contrary to the actual sample where
the reinforcement percentage is increased by adding
more number of same-sized particles. This was mainly
because in the present model we have fixed the overall
dimensions of the beam model. Hence, placement of
increased number of smaller particles inside the beam
was difficult to achieve for higher volume fraction be-
cause it leads to physical contact of the particles and
ends up in forming a continuous fiber reinforced type
FEM model. It may be noted here that during modeling
of a smooth faceted particle shape such as a sphere or
ellipsoid, as well as, in the case of increased number of
small particle dispersion, the FEM model ends up with
high mesh count, which exceeds a typical PentiumTM

computer’s performance limits. The FEM model as-
sumes the interface between the reinforcement particle
and the matrix to have perfect adherence. The elastic
modulus of magnesium [15] and SiC [16] was taken to
be 45 GPa and 450 GPa, respectively, and the density
was taken to be 1740 Kg/m3 and 3200 Kg/m3, respec-
tively.

The linear dynamic equation of the MMC rod can be
given based on force balance principle.

[M ] · {y}•• + [B] · {y}• + [K ] · {y} = { f } (4)

where, [M ]= the mass matrix, [B]= the damping ma-
trix, [ K ]= the stiffness matrix,{y}= the displace-
ment vector,{ f }= the applied force vector,t = time,
{y}•• = d2y/dt2, {y}• = dy/dt .

The mass, stiffness and damping matrices are cal-
culated in the computer program based on the input
elastic modulus, Poisson’s ratio, density, and damping
coefficient of the reinforcement phase and the metallic
matrix. The overall dynamic behavior of the MMC ma-
terial depends on the properties of the individual phases
and the dispersion characteristics of the reinforcement
phase. Hence the FEM model should be in close accor-
dance with the actual material in a global perspective.

Under no load conditions, the natural frequencies
and mode shapes, also called eigen values and eigen
vector, under zero damping can be computed based on
typical eigen value solver such as Subspace iteration

TABLE I Results of the theoretical and experimental determination
of dynamic elastic modulus values for Mg-SiC composite samples

Free-Free Halpin-Tsai FEM
Weight Density Porosity method, method, method,
% (g/cm3) (%) Efree (GPa) EH-T (GPa) EFEM (GPa)

0.0∗ 1.74 0.00 45.00 45.00 45.00
7.6 1.78 0.84 45.04 51.37 49.62

14.9 1.85 1.14 49.38 58.35 52.78
26.0 1.96 0.91 54.09 70.85 62.04

∗The properties corresponding to the monolithic magnesium sample are
taken from reference [15].

method, Simultaneous iteration method or Block Lanc-
zos method. In this analysis Block Lanczos method [14]
was used to extract the natural frequencies and mode
shapes for the MMC beam model. Based on the mass
of the beam the density was estimated. Using Equation
3 the equivalent elastic modulus of the MMC was eval-
uated. Further an empirical relation was fit, see Equa-
tion 5, between the FEM predicted modulus,EFEM, and
the reinforcement weight percentage,W, of the MMC,
using MATLAB software. Using Equation 5 the dy-
namic elastic modulus corresponding to the experimen-
tal reinforcement’s weight percentage was calculated
and is listed in Table I.

EFEM = 45+ 0.1955W2− 2.1222e-2W3

+ 8.8489e-4W3− 1.233e-5W5 (5)

4. Experimental procedures
4.1. Materials
In this study, magnesium based composites containing
7.6, 14.9 and 26.0 weight percentages of SiC partic-
ulates processed using molten metal based technique
and hot extruded at 350◦C were analysed. Fig. 2 shows
a typical SiC particulate distribution pattern in the Mg-
SiC MMC rod with 7.6 weight percentage of SiC.

4.2. Density and porosity measurement
The densities of the extruded composite samples were
measured by Archimedes’ principle [17]. The speci-
mens were weighed in air and in distilled water using
an A & D ER-182A electronic balance to an accuracy of

Figure 2 Representative SEM micrograph showing uniform distribu-
tion of SiC particulates observed in Mg-SiC MMC rod with 7.6 weight
percentage of SiC.
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Figure 3 Schematic diagram showing experimental setup of Free-Free
beam technique.

±0.0001 g. The porosity was then calculated from the
measured composite density, theoretically computed
rule of mixture density and the reinforcement weight
fractions [17].

4.3. Free-free method
The most popular flexural mounting method is Free-
Free beam method (see Fig. 3). Based on the ASTM
C1259-96 standard [10], the beam is suspended at its
nodes by two nylon strings whose inertia is very low.
Since it is virtually impossible to find the exact location
of the nodes, some energy is inevitably lost in the vibra-
tion of the strings. Under a resonance condition, nodes

(a) (b)

(c) (d)

Figure 4 (a) Typical FRF plot for the pure magnesium rod. (beam length: 249 mm and beam diameter: 9.83 mm (b) Typical FRF plot for the Mg-SiC
MMC rod with 7.6 weight % of SiC. (beam length: 254 mm and beam diameter: 9.82 mm) (c) Typical FRF plot for the Mg-SiC MMC rod with 14.9
weight % of SiC. (beam length: 255 mm and beam diameter: 9.54 mm) (d) Typical FRF plot for the Mg-SiC MMC rod with 26.0 weight % of SiC.
(beam length: 254 mm and beam diameter: 9.85 mm).

and anti-nodes are the locations in the beam that would
undergo minimum and maximum vibration amplitude,
respectively, and can be detected from the mode shape.

The experiment was performed with the accelerome-
ter placed at the anti-nodal position [12], viz., at the end
or at the center of the beam length so as to capture the
first mode of flexural vibration, which would be similar
to a half sine wave. Initially a preliminary analysis was
performed to find the nodal points of the bending mode.
The strings were placed at this position to minimize the
energy loss passed into the strings. The nodal points
for beams of uniform section in a free-free suspension
are at distances from the free ends of approximately
0.22L and 0.78L, whereL is the length of the beam
[18]. Very little exciting energy is required, even for
very large specimens, because the measurement is per-
formed at very low strain amplitude. Hence only a very
light tap is sufficient to initiate the measurement.

The excitations were provided using a modally tuned
hammer, which has a load sensor at the tip. The tip
material can be changed from nylon to steel so as to
change the impulse duration when the excitation is ap-
plied [12]. Following excitation, first mode of flexu-
ral vibrations was captured by accelerometer and the
frequency response function (FRF) thus obtained was
used to determine natural frequency. Typical frequency
plots for the three composite samples are shown in the
Fig. 4a to c. The natural frequency (ωn) thus obtained
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was used to determine the dynamic elastic modulus us-
ing Equation 3.

5. Results
5.1. FEM predictions vs. experimental

measurements
The influence of the SiC reinforcement on the dynamic
elastic modulus of the metallic matrix was investigated
by modeling the uniformly distributed cubic reinforce-
ment particulates in a circular beam of 300 mm length
and 10 mm diameter with various volume percentage
of SiC particulates, as shown in Fig. 1. The dynamic
elastic modulusEFEM listed in Table I for each of the
composite samples was computed using Equation 3 as-
suming perfect isotropic conditions.

The elastic modulus measurement of composite sam-
ples containing three different weight percentage of re-
inforcement viz., 7.6%, 14.9% and 26.0%, was per-
formed separately and benchmarked against the pure
magnesium sample. The dynamic elastic modulus,
Efree, computed using the extracted first modal fre-
quency using Equation 3 for the composite samples
are listed in Table I. Fig. 5 shows the variation of the
elastic modulus with the weight percentage, from both
experimental and FEM predictions.

Among the various theoretical methods [19] to pre-
dict the elastic modulus of the particulate dispersed
MMCs, Halpin-Tsai equation is found to be closer to
the experimental results. Table I lists the elastic mod-
ulus predicted using Halpin-Tsai method (Equation 6)
for a typical unit aspect ratio reinforcement particulate.

EH-T = Em(1+ 2sqVp)

1− qVp
(6)

where,Ep andEm are the elastic modulus of the partic-
ulate and metallic matrix, respectively.Vp is the volume
fraction of the particulates,s is the particulate aspect
ratio which is maintained as unity in this analysis. The
term q is used for mathematical simplification and is
expressed in Equation 7.

q = (Ep/Em− 1)

(Ep/Em)+ 2s
(7)

Figure 5 Variation of elastic modulus with weight percentage of SiC
particulates.

6. Discussion
The free-free experimental test method was found to
be highly repeatable and had many advantages for
testing the dynamic modulus. The method was non-
destructive, and used low cost instrumentation and ac-
commodates a wide variety of specimen configurations
and sizes. Testing by the impulse excitation technique
was exceptionally simple and fast, and the results are
not affected much by human error. The as extruded bars
were tested by the impulse excitation method without
any additional machining as compared to a tensile test
method.

From Table I, an increase in the elastic modulus of
the material with an increase in weight percentage of
the SiC particulates can be observed for both theoreti-
cal predictions and experimental results. This increase
in the elastic modulus may be attributed to the higher
elastic modulus of SiC, which is reported to be about
450 GPa [16] as compared to the ductile magnesium
metal matrix’sE value of 45 GPa [15].

The elastic modulus prediction using FEM shown in
Fig. 5 matches close to the Halpin-Tsai predicted elastic
modulusEH-T results. The advantage of FEM over these
empirical equations is that it can model various types
of particulate shapes, dispersion characteristics and
material. The experimentally determined elastic modu-
lus values for composite samples are found to be lower
when compared to the FEM results for all the three com-
posite samples. Based on static modulus experiments
[20] for aluminium based metal matrix composites, it
has been observed that presence of clusters and voids
in the MMC significantly decreases the magnitude of
elastic modulus. The same can be expected to hold
good for the dynamic modulus experimental results
obtained in the present study. Further work is contin-
uing in this area. Secondly, in the present FEM model,
weight percentage of SiC was varied by changing the
size of the SiC particulate while keeping the number of
particulates constant. This was contrary in the case of
the actual sample, where the size of the particulates is
maintained constant while the number of particulates
is varied to achieve a particular volume fraction of SiC.
This discrepancy between the FEM model and the ex-
perimental sample is expected to have an influence on
the final results shown in Fig. 5 since the mean spacing
distance of the particulates has more bearing on the
bending stiffness and on the mode shape of the beam.
Thirdly, an ideal interface between the SiC and the Mg-
matrix was assumed in the FEM model and the presence
of clusters was not taken into account, as seen in Fig. 2.
While further efforts are being made to circumvent
these shortcomings, the results of the modeling,
however, follow the similar trend as predicted by the
Halpin-Tsai equation and are comparatively in better
agreement with the experimentally determined values.

7. Conclusions
The following inferences can be made from the analy-
sis:

1. The free-free beam type flexural resonance
method can successfully be used to measure the dy-
namic modulus of the Mg-SiC composites.
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2. The elastic modulus values obtained using finite
element method were found to be in better agreement
with the experimental modulus values when compared
to those predicted by the Halpin-Tsai method. Both the
theoretical approaches, in common, exhibit the increas-
ing trend of elastic modulus value with an increase in
weight percentage of SiC particulates.

3. An increase in the weight percentage of SiC par-
ticulates in the magnesium matrix increases the elastic
modulus of the composite material.
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